
Supplementary Material

A. Implementation Details
We preprocess the dataset following the ARAH1. Dur-

ing optimization, we follow the same strategy from [4] to
densify and prune the 3D Gaussians, using the view-space
position gradients derived from the transformed Gaussians
in the observation space as the criterion for densification.

The similar pose/image is selected by computing the
orientation and limb angle difference provided by smpl
model. For each pose/image, we select at most 3 similar
poses/images.

Our model is trained for a total of 13k iterations on the
ZJU-MoCap [5] dataset and 10k iterations on H36M [2] on
a single NVIDIA RTX 3090 GPU. We use Adam to opti-
mize our model and the per-frame latent codes with hyper-
parameters β1 = 0.9 and β2 = 0.999. The learning rate
of 3D Gaussians is exactly the same as the original imple-
mentation from [4]. We set the learning rate for forward
skinning network θr to 1 × 10−4, 1 × 10−4 for DGCNN
and MLP in point cloud encoder, and 1 × 10−3 for all the
others. An exponential learning rate scheduler is employed
to gradually decrease the learning rate by a factor of 0.1
on neural networks. We also apply a weight decay with a
weight of 0.05 to the per-frame latent codes.

Following prior works [6, 8], we split the training stage
and learn the whole model in a coarse-to-fine manner. In the
first 1k iterations, we freeze everything except the forward
skinning network fθr to learn a coarse skinning field with
Lskin. We then enable optimization on the 3D Gaussians
after 1k steps. To decouple rigid and non-rigid motion, we
start to optimize the non-rigid deformation network fθnr

af-
ter 3k iterations. Lastly, we turn on Geometric and Seman-
tic Feature Learning after 5k iterations.

B. Implementation Details for Baselines
In this section, we elaborate on the implementation de-

tails of baselines used for comparison to our proposed
method, i.e. NeuralBody [5], HumanNeRF [8], MonoHu-
man [9] and InstantAvatar [3].

For NeuralBody [5], HumanNeRF [8], MonoHuman [9]
and InstantAvatar [3], we use the results of them reported in
3DGS-Avatar [6] which follow the same data split.

1https://github.com/taconite/arah-release

For 3DGS-Avatar [6], we train the models using the code
from official code repository2. For GauHuman [1], we train
the models using the code from official code repository3 for
15000 epochs. For GoMAvatar [7], we train the models
using the code from official code repository4. All other hy-
perparameters remain unchanged. The trained models are
then used for qualitative evaluation and out-of-distribution
pose animation.

C. Loss Definition

In the main paper we describe our loss term which can
be formulated as follows:

Lrgb = (1− λadjust)Lo
rgb + λadjustLa

rgb,

(1)

Lmask = (1− λadjust)Lo
mask + λadjustLa

mask,
(2)

LLPIPS = (1− λadjust)Lo
LPIPS + λadjustLa

LPIPS ,
(3)

Lskin = (1− λadjust)Lo
skin + λadjustLa

skin,
(4)

Lisopos = (1− λadjust)Lo
isopos + λadjustLa

isopos,

(5)

Lisocov = (1− λadjust)Lo
isocov + λadjustLa

isocov,
(6)

where Lo
rgb, Lo

mask, Lo
LPIPS , Lo

skin, Lo
isopos, Lo

isocov are
the losses on images rendered from the deformed Gaussians
Go, while La

rgb, La
mask, La

LPIPS , La
skin, La

isopos, La
isocov

are the losses on images rendered from the adjusted Gaus-
sians Ga. We set λadjust as 0.1 in this function. We describe
how each loss term is defined below:

RGB Loss. We employ an l1 loss for pixel-wise error
and a perceptual loss for robustness against local misalign-
ments, crucial in monocular setups.

2https://github.com/mikeqzy/3dgs-avatar-release
3https://github.com/skhu101/GauHuman
4https://github.com/wenj/GoMAvatar

https://github.com/taconite/arah-release
https://github.com/mikeqzy/3dgs-avatar-release
https://github.com/skhu101/GauHuman
https://github.com/wenj/GoMAvatar


Full Input
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Figure 1. More visualization results on novel view and novel pose in full inputs.



Sparse Inputs
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Figure 2. More visualization results on novel view and novel pose in sparse inputs..

Mask Loss. To boost the convergence of 3D Gaussian po-
sitions, we use an explicit mask loss. For each pixel p, we
compute the opacity value Op by summing up the sample
weights in the rendering equation in the main paper:

Op =
∑

i
α′
i

∏i−1

j=1
(1− α′

j). (7)

We thus supervise it with the ground truth foreground mask
via an l1 loss. Experiments show that the l1 loss provides
faster convergence than the Binary Cross Entropy (BCE)
loss.

LPIPS Loss. Following [8], we use VGG-based LPIPS
as the perceptual loss. Unlike NeRF methods, we render
full images via rasterization, eliminating the need for patch
sampling. For efficiency, we compute LPIPS on cropped
bounding boxes using ground truth masks:

LLPIPS = LPIPS(Ĉ, C). (8)

Skinning Loss: We leverage SMPL prior by sampling
1024 points Xskin on the surface of the canonical SMPL
mesh and regularizing the forward skinning network
with corresponding skinning weights w interpolated with

barycentric coordinates.

Lskin =
1

|Xskin
|

∑
xskin∈Xskin

||fθr (xskin)−w||2. (9)

In Lo′ , target images are the similar images selected from
the dataset and synthesized images rendered from adjusted
Ga. We set λ1 = 0.1, λ2 = 0.01, λ3 = 0.1, λ4 = 1, λ5 =
100, λ6 = 0.001 in all experiments. For λ3, we set it to 10
for the first 1k iterations for fast convergence to a reason-
able skinning field, then decreased to 0.1 for soft regulariza-
tion.For λadjust and λ6 we set them to 0 until 8k iterations.
We also set λadjust to 0.001 after 9k iterations.

D. More Visualization Results
We also provide extended visualization results in both

full and sparse inputs to further illustrate the robustness and
versatility of our model for 3D avatars generation, as shown
in Fig. 1 and Fig. 2. Specifically, these examples showcase
avatars rendered from novel view and novel pose. These
visualizations demonstrate the model’s ability to generalize
effectively to novel perspectives and body configurations,
underscoring its potential to generate realistic and adaptable
avatars across a range of viewing conditions and postures.



We provide generated videos in the project page5.
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